Wetenschap

Evaluatie van een Zwitsers multiparametermodel voor de referentiewaarden van de kreatinine-uitscheiding in urine

Lees online

Recent werd een vier-parametermodel gepubliceerd, gebaseerd op leeftijd, geslacht, lichaamsgewicht en -lengte voor het schatten van de kreatinine-uitscheiding van de volwassen Zwitserse bevolking. Dit model werd gepresenteerd als representatief voor de gehele Europese bevolking. Wulkan en Van der Horst hebben dit model geëvalueerd met gegevens van gezonde personen uit zowel Europa als daarbuiten.

Referenties

  1. Forni Ogna V, Ogna A, Vuistiner P, et al. New anthropometry-based ageand sex-specific reference values for urinary 24-hour creatinine excretion based on the adult Swiss population. BMC Med 2015; 13: 1–10.
  2. Reijnierse EM, Trappenburg MC, Leter MJ, et al. The Impact of Different Diagnostic Criteria on the Prevalence of Sarcopenia in Healthy Elderly Participants and Geriatric Outpatients. Gerontology 2015; 61: 491–496.
  3. Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin Nutr 2012; 31: 652–658.
  4. Brown JC, Harhay MO, Harhay MN. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 2016; 290–298.
  5. Hu X, Zhang L, Wang H, et al. Malnutrition-sarcopenia syndrome predicts mortality in hospitalized older patients. Sci Rep 2017; 7: 1–9.
  6. Wang Z-M, Gallagher D, Nelson ME eta al. Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion computerized by axial tomography. Am J Clin Nutr 1996;63:863-9.
  7. Clark RV, Walker AC, O’Connor-Semmes RL, et al. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol 2014; 116: 1605–1613.
  8. Polinder-Bos HA, Nacak H, Dekker FW, et al. Low Urinary Creatinine Excretion Is Associated With Self-Reported Frailty in Patients With Advanced Chronic Kidney Disease. J Comput Des Eng 2017; 4: 676–685.
  9. Burk KA. Urinary creatinine and 3-methylhistidine as indices of body composition. Iowa State University - Thesis, 1993.
  10. Worley SE. Factors Influencing Body Composition of Postmenopausal Women. Oregon State University - Thesis, 1986.
  11. Lew SQ, Bosch P. Effect of Diet on Creatinine Clearance and Excretion in Young and Elderly Healthy Subjects and in Patients with Renal Disease. J Am Soc Nephrol 1991; 2: 856–865.
  12. Chappuis A, Bochud M, Glatz N, et al. Swiss Survey on Salt Intake: Main Results. 2011.
  13. De Keyzer W, Huybrechts I, Dekkers ALM, et al. Predicting urinary creatinine excretion and its usefulness to identify incomplete 24h urine collections. Br J Nutr 2012; 108: 1118–1125.
  14. Sinkeler SJ, Visser FW, Krikken JA, et al. Higher body mass index is associated with higher fractional creatinine excretion in healthy subjects. Nephrol Dial Transplant 2011; 26: 3181–3188.
  15. Minten VK, Lowik MR, Deurenberg P, et al. Inconsistent associations among anthropometric measurements in elderly Dutch men and women. J Am Diet Assoc 1991; 91: 1408–1412.
  16. Kesteloot H, Joossens J V. On the determinants of the creatinine clearance: a population study. J Hum Hypertens 1996; 10: 245–249.
  17. Barregård L, Møller P, Henriksen T, et al. Human and Methodological Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid Redox Signal 2013; 18: 2377–2391.
  18. Ortega RM, López-Sobaler AM, Ballesteros JM, et al. Estimation of salt intake by 24h urinary sodium excretion in a representative sample of Spanish adults. Br J Nutr 2011; 105: 787–794.
  19. Vasara E, Marakis G, Breda J, et al. Sodium and potassium intake in healthy adults in thessaloniki greater metropolitan area—the salt intake in Northern Greece (SING) study. Nutrients 2017; 9: 1–11.
  20. Ribič CH, Zakotnik JM, Vertnik L, et al. Salt intake of the Slovene population assessed by 24 h urinary sodium excretion. Public Health Nutr 2010; 13: 1803–1809.
  21. Donadio C, Moriconi D, Berta R, et al. Estimation of Urinary Creatinine Excretion and Prediction of Renal Function in Morbidly Obese Patients: New Tools from Body Composition Analysis. Kidney Blood Press Res 2017; 42: 629–640.
  22. Aloia JF, Shieh A, Mikhail M, et al. Urinary calcium excretion in postmenopausal African American women. Clin Nephrol 2015; 84: 130–137.
  23. Milhoransa P, Vanacor R, Weber Furlanetto T. Intraand interindividual iodine excretion in 24 hours in individuals in Southern Brazil: A cross-sectional study. Ann Nutr Metab 2011; 57: 260–264.
  24. Moriyama M, Saito H, Nakano A, et al. Estimation of Urinary 24-hr Creatinine Excretion by Body Size and Dietary Protein Level: A Field Survey Based on Seasonally Repeated Measurements for Residents Living in Akita, Japan. Tohoku J Exp Med 1988; 156: 55–63.
  25. Ozeki T, Ebisawa H, Ichikawa M, et al. Physical Activities and Energy Expenditures of Institutionalized Japanese Elderly Women. J Nutr Sci Vitaminol 2000; 46: 188–192.
  26. Liu Z min, Ho SC, Chen BL, et al. Comparison of Ten Creatinine-based Equations for Estimation of Glomerular Filtration Rate in Chinese Postmenopausal Women with Normal or Mildly Reduced Renal Function. J Med Diagn Meth 2014; 3: 1–6.
  27. Xu J, Wang M, Chen Y, et al. Estimation of salt intake by 24-hour urinary sodium excretion: A cross-sectional study in Yantai, China. BMC Public Health 2014; 14: 2–7.
  28. Kuriyan R, Thomas T, Kurpad A V. Total body muscle mass estimation from bioelectrical impedance analysis & simple anthropometric measurements in Indian men. Indian J Med Res 2008; 127: 441–446.
  29. Kim H, Lee S, Choue R. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise. J Int Soc Sports Nutr 2011; 8: 1–6.
  30. Do HTP. Hypertension in Vietnam: prevalence, risk groups and effects of salt substitution. Wageningen University - Thesis, 2014.
  31. Polito A, Cuzzolaro M, Raguzzini A, et al. Body composition changes in anorexia nervosa. Eur J Clin Nutr 1998; 52: 655–662.
  32. Rigaud D, Hassid J, Meulemans A, et al. A paradoxical increase in resting energy expenditure in malnourished patients near death: The king penguin syndrome. Am J Clin Nutr 2000; 72: 355–360.
  33. Lee JP, Dang AT. Evaluation of methods to estimate glomerular filtration rate versus actual drug clearance in patients with chronic spinal cord injury. Spinal Cord 2011; 49: 1158–1163.
  34. Khan J, Bath K, Hafeez F, et al. Creatinine Excretion as a Determinant of Accelerated Skeletal Muscle Loss with Critical Illness. Turkish J Anesth Reanim 2018; 46: 311–315.
  35. Toni S, Morandi R, Busacchi M, et al. Nutritional status evaluation in patients affected by bethlempathy and ullrich congenital muscular dystrophy. Front Aging Neurosci 2014; 6: 1–10.
  36. Taylor EN, Curhan GC. Differences in 24-Hour Urine Composition between Black and White Women. J Am Soc Nephrol 2007; 18: 654–659.
  37. Bingham SA, Williams R, Cole TJ, et al. Reference values for analytes of 24-h urine collections known to be complete. Ann Clin Biochem 1988; 25: 610–619.
Wetenschap

Evaluatie van een Zwitsers multiparametermodel voor de referentiewaarden van de kreatinine-uitscheiding in urine

Recent werd een vier-parametermodel gepubliceerd, gebaseerd op leeftijd, geslacht, lichaamsgewicht en -lengte voor het schatten van de kreatinine-uitscheiding van de volwassen Zwitserse bevolking. Dit model werd gepresenteerd als representatief voor de gehele Europese bevolking. Wulkan en Van der Horst hebben dit model geëvalueerd met gegevens van gezonde personen uit zowel Europa als daarbuiten.

Referenties

  1. Forni Ogna V, Ogna A, Vuistiner P, et al. New anthropometry-based ageand sex-specific reference values for urinary 24-hour creatinine excretion based on the adult Swiss population. BMC Med 2015; 13: 1–10.
  2. Reijnierse EM, Trappenburg MC, Leter MJ, et al. The Impact of Different Diagnostic Criteria on the Prevalence of Sarcopenia in Healthy Elderly Participants and Geriatric Outpatients. Gerontology 2015; 61: 491–496.
  3. Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin Nutr 2012; 31: 652–658.
  4. Brown JC, Harhay MO, Harhay MN. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 2016; 290–298.
  5. Hu X, Zhang L, Wang H, et al. Malnutrition-sarcopenia syndrome predicts mortality in hospitalized older patients. Sci Rep 2017; 7: 1–9.
  6. Wang Z-M, Gallagher D, Nelson ME eta al. Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion computerized by axial tomography. Am J Clin Nutr 1996;63:863-9.
  7. Clark RV, Walker AC, O’Connor-Semmes RL, et al. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol 2014; 116: 1605–1613.
  8. Polinder-Bos HA, Nacak H, Dekker FW, et al. Low Urinary Creatinine Excretion Is Associated With Self-Reported Frailty in Patients With Advanced Chronic Kidney Disease. J Comput Des Eng 2017; 4: 676–685.
  9. Burk KA. Urinary creatinine and 3-methylhistidine as indices of body composition. Iowa State University - Thesis, 1993.
  10. Worley SE. Factors Influencing Body Composition of Postmenopausal Women. Oregon State University - Thesis, 1986.
  11. Lew SQ, Bosch P. Effect of Diet on Creatinine Clearance and Excretion in Young and Elderly Healthy Subjects and in Patients with Renal Disease. J Am Soc Nephrol 1991; 2: 856–865.
  12. Chappuis A, Bochud M, Glatz N, et al. Swiss Survey on Salt Intake: Main Results. 2011.
  13. De Keyzer W, Huybrechts I, Dekkers ALM, et al. Predicting urinary creatinine excretion and its usefulness to identify incomplete 24h urine collections. Br J Nutr 2012; 108: 1118–1125.
  14. Sinkeler SJ, Visser FW, Krikken JA, et al. Higher body mass index is associated with higher fractional creatinine excretion in healthy subjects. Nephrol Dial Transplant 2011; 26: 3181–3188.
  15. Minten VK, Lowik MR, Deurenberg P, et al. Inconsistent associations among anthropometric measurements in elderly Dutch men and women. J Am Diet Assoc 1991; 91: 1408–1412.
  16. Kesteloot H, Joossens J V. On the determinants of the creatinine clearance: a population study. J Hum Hypertens 1996; 10: 245–249.
  17. Barregård L, Møller P, Henriksen T, et al. Human and Methodological Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid Redox Signal 2013; 18: 2377–2391.
  18. Ortega RM, López-Sobaler AM, Ballesteros JM, et al. Estimation of salt intake by 24h urinary sodium excretion in a representative sample of Spanish adults. Br J Nutr 2011; 105: 787–794.
  19. Vasara E, Marakis G, Breda J, et al. Sodium and potassium intake in healthy adults in thessaloniki greater metropolitan area—the salt intake in Northern Greece (SING) study. Nutrients 2017; 9: 1–11.
  20. Ribič CH, Zakotnik JM, Vertnik L, et al. Salt intake of the Slovene population assessed by 24 h urinary sodium excretion. Public Health Nutr 2010; 13: 1803–1809.
  21. Donadio C, Moriconi D, Berta R, et al. Estimation of Urinary Creatinine Excretion and Prediction of Renal Function in Morbidly Obese Patients: New Tools from Body Composition Analysis. Kidney Blood Press Res 2017; 42: 629–640.
  22. Aloia JF, Shieh A, Mikhail M, et al. Urinary calcium excretion in postmenopausal African American women. Clin Nephrol 2015; 84: 130–137.
  23. Milhoransa P, Vanacor R, Weber Furlanetto T. Intraand interindividual iodine excretion in 24 hours in individuals in Southern Brazil: A cross-sectional study. Ann Nutr Metab 2011; 57: 260–264.
  24. Moriyama M, Saito H, Nakano A, et al. Estimation of Urinary 24-hr Creatinine Excretion by Body Size and Dietary Protein Level: A Field Survey Based on Seasonally Repeated Measurements for Residents Living in Akita, Japan. Tohoku J Exp Med 1988; 156: 55–63.
  25. Ozeki T, Ebisawa H, Ichikawa M, et al. Physical Activities and Energy Expenditures of Institutionalized Japanese Elderly Women. J Nutr Sci Vitaminol 2000; 46: 188–192.
  26. Liu Z min, Ho SC, Chen BL, et al. Comparison of Ten Creatinine-based Equations for Estimation of Glomerular Filtration Rate in Chinese Postmenopausal Women with Normal or Mildly Reduced Renal Function. J Med Diagn Meth 2014; 3: 1–6.
  27. Xu J, Wang M, Chen Y, et al. Estimation of salt intake by 24-hour urinary sodium excretion: A cross-sectional study in Yantai, China. BMC Public Health 2014; 14: 2–7.
  28. Kuriyan R, Thomas T, Kurpad A V. Total body muscle mass estimation from bioelectrical impedance analysis & simple anthropometric measurements in Indian men. Indian J Med Res 2008; 127: 441–446.
  29. Kim H, Lee S, Choue R. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise. J Int Soc Sports Nutr 2011; 8: 1–6.
  30. Do HTP. Hypertension in Vietnam: prevalence, risk groups and effects of salt substitution. Wageningen University - Thesis, 2014.
  31. Polito A, Cuzzolaro M, Raguzzini A, et al. Body composition changes in anorexia nervosa. Eur J Clin Nutr 1998; 52: 655–662.
  32. Rigaud D, Hassid J, Meulemans A, et al. A paradoxical increase in resting energy expenditure in malnourished patients near death: The king penguin syndrome. Am J Clin Nutr 2000; 72: 355–360.
  33. Lee JP, Dang AT. Evaluation of methods to estimate glomerular filtration rate versus actual drug clearance in patients with chronic spinal cord injury. Spinal Cord 2011; 49: 1158–1163.
  34. Khan J, Bath K, Hafeez F, et al. Creatinine Excretion as a Determinant of Accelerated Skeletal Muscle Loss with Critical Illness. Turkish J Anesth Reanim 2018; 46: 311–315.
  35. Toni S, Morandi R, Busacchi M, et al. Nutritional status evaluation in patients affected by bethlempathy and ullrich congenital muscular dystrophy. Front Aging Neurosci 2014; 6: 1–10.
  36. Taylor EN, Curhan GC. Differences in 24-Hour Urine Composition between Black and White Women. J Am Soc Nephrol 2007; 18: 654–659.
  37. Bingham SA, Williams R, Cole TJ, et al. Reference values for analytes of 24-h urine collections known to be complete. Ann Clin Biochem 1988; 25: 610–619.
Over dit artikel
Auteurs
Raymond Wulkan, Martin van der Horst
Over de auteurs

Raymond W. Wulkan, Klinisch Chemisch Laboratorium, Maasstadziekenhuis, Maasstadweg 21, 3079 DZ, Rotterdam, Nederland;
Martin van der Horst, Klinisch Chemisch Laboratorium, Treant zorggroep, ziekenhuislocatie Scheper, Boermarkeweg 60, 7824 AA, Emmen, Nederland.

Correspondentie:
Raymond W Wulkan, Afdeling Klinische chemie, Maasstadziekenhuis, Maasstadweg 21, 3079 DZ, Rotterdam, Nederland.
Email: WulkanR@maasstadziekenhuis.nl

E-pubdatum
27 september 2019
ISSN online
2589-6296


Over dit artikel
Auteurs
Raymond Wulkan, Martin van der Horst
Over de auteurs

Raymond W. Wulkan, Klinisch Chemisch Laboratorium, Maasstadziekenhuis, Maasstadweg 21, 3079 DZ, Rotterdam, Nederland;
Martin van der Horst, Klinisch Chemisch Laboratorium, Treant zorggroep, ziekenhuislocatie Scheper, Boermarkeweg 60, 7824 AA, Emmen, Nederland.

Correspondentie:
Raymond W Wulkan, Afdeling Klinische chemie, Maasstadziekenhuis, Maasstadweg 21, 3079 DZ, Rotterdam, Nederland.
Email: WulkanR@maasstadziekenhuis.nl

E-pubdatum
27 september 2019
ISSN online
2589-6296